Addition

Guidance	Examples	
Pre: Playing with numbers, counting, ordering and sorting Stage 1: Recording and developing mental pictures - Children are encouraged to develop a mental picture of the number system in their heads to use for calculation. They experience practical calculation opportunities using a wide variety of equipment, e.g. small world play, role play, counters, cubes etc. They develop ways of recording calculations using pictures, etc.	Pre: counting in number rhymes and songs, counting objects during play such as cups on the table or fruit in the bowl. Ordering numbers - eg in the messy Maths tray, large tiles outside, numbered pebbles in the sand. Sorting practical objects and counting. One to one correspondence of numbers and objects. Stage 1 One and one, two more makes one, two three." There are 3 people on the bus. Another person gets on. How many now?	Initially recording of calculating should be done by adults to model what children have done in pictures, symbols, numbers and words. Over time there should be an expectation that children will also become involved in the recording process. Whilst cameras are an excellent way of keeping a record of what children have done, they are not a substitute for the modelling of different ways of recording calculation procedures.

Stage 2：Progression in the use of a number line

－To help children develop a sound understanding of numbers and to be able to use them confidently in calculation，there needs to progression in their use of number tracks and number lines

The labelled number line

－Children begin to use numbered lines to support their calculations counting on in ones
－They select the biggest number first i．e． 8 and count on the smaller number in ones．

Stage 2

Children should experience a range of representations of number lines，such as the progression listed below． Physically moving or jumping on a large number line．
Filling in numbers on a blank number line．
Number track

1	2	3	4	5	6	7	8	9	10

Number line，all numbers labelled

－Number line， 5 s and 10 s labelled
－Number line，10s labelled
－Number lines，marked but unlabelled $8+5=13$

Additional＇number lines＇－
 The bead string and hundred square

A hundred square is an efficient visual resource to support adding on in ones and tens and is an extension to the number track that children have experienced previously．

$$
8+2=10
$$

11	2	1	4	5	4	1	1	1	H
11	12	11	4	11	14	11	11	11	3
H1	17	\square	3	H	31	11	11	1	16
11	11	11	H	－	H	II	H	1	建
11	\square	4	4	11	4	4	41	＋1	倖
4	4	M	4	5	4	H	11	19	H
＋11	0	＋1	1	5	H	it	速	䡒	4
71	12	11	H	8	14	IT	H	7	隆
11	18	T	H	$\underline{\square}$	H	IT	1	$1{ }^{1+1}$	W
H1	成	戒	H	F	H	17	＋1	＋	

Different orientations of the 100 square help children transfer their skills and understanding between similar representations．

Along with the number line， bead strings can be used to illustrate addition．Eight beads are counted out，then the two beads． Children count on from eight as they add the two beads e．g．starting at 8 they count 9 then 10 as they move the beads．

Agreed Mathematics Calculation Methods

Starbeck Community Primary and Nursery School Agreed Mathematics Calculation Methods

	$48+36$ $\begin{aligned} & 40+30=70 \\ & 8+6=14 \end{aligned}$ $70+14=84$ Cuisenaire can also be used to support this step, especially when crossing the tens barrier with ones. When this occurs, children should use the term 'exchange' to describe converting ten ones into one ten.	
From Year 3 onwards Stage 5 - Using Dienes/place value counters alongside columnar written method - To ensure the statutory final written method is grounded in understanding, this stage connects the practical equipment to the formal written method using a similar and transferrable layout. - Children first experience the practical version of column addition and when confident in explaining this, including exchanging when crossing the tens barrier with ones, they record the written method alongside. - Ideally children will experience this stage with a variety of practical equipment to make sure their understanding is embedded and transferrable between representations.	It may be appropriate to teach children the process with numbers that they would be expected to calculate mentally or with jottings. This is to aid with the practicalities of the use of such equipment. However this should be the exception rather than the rule so children see a clear purpose for learning a new method for calculating. In this example $25+47=$	Represented in place value columns and rows. Starting adding with the 'least significant digit' When the tens barriers is crossed in the 'ones' swapping then takes place.

Agreed Mathematics Calculation Methods

- Children may learn more from experiencing the inefficiency of not starting with column with least significant value rather than being 'told' where to start.	Whilst these images show the total existing alongside the two numbers being added, it may be more representative to 'drag' the manipulatives down to the totals box, leaving the written numbers as a reminder of what was originally there.	Because of the exchange we can know see that this ten belongs in the tens column and is carried there to be included in the total of that column. The tens are then added together $20+$ $40+10=70$, recorded as 7 in the tens column.
Stage 5: Compact column method - In this method, recording is reduced further. Carried digits are recorded, using the words 'carry ten' or 'carry one hundred' etc., according to the value of the digit. - Later the method is extended when adding more complex combinations such as three	$\begin{array}{rr} \hline \text { Stage 5 } & \\ 258 & 366 \\ +\frac{87}{345} & +\frac{458}{11} \end{array}$ Column addition remains efficient when used with larger whole numbers and once learned, is quick	

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods
two-digit numbers, two three-digit numbers, and problems involving several numbers of different sizes.
and reliable.
Jhtur 3674
$+\underline{2507}$
6181
1.1

Subtraction

Guidance	Examples	
Pre: Playing with numbers, counting back. Stage 1: Recording and developing mental pictures Children are encouraged to develop a mental picture of the calculation in their heads. They experience practical activities using a variety of equipment and develop ways to record their findings including models and pictures. - Find the difference is introduced through practical situations and images.	Pre: Counting in number rhymes and songs, counting back in songs, Counting back in a range or practical activities. Stage 1 There are four children in the home corner. One leaves. How many are left?	Initially recording of calculating should be done by adults to model what children have done in pictures, symbols, numbers and words. Over time there should be an expectation that children will also become involved in the recording process, using their own informal methods of recording.
Stage 2: Progression in the use of a number line - Finding out how many items are left	Stage 2 Children should experience a range of representations	Additional 'number lines' - The bead string and hundred square A hundred square is an efficient visual resource to

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods
after some have been＇taken away＇is initially supported with a number track followed by labelled，unlabelled and finally empty number lines，as with addition．

The labelled number line

－The labelled number line，linked with previous learning experiences，is used to support calculations where the result is less objects（i．e．taking away）by counting back．

Difference between

－The number line should also be used to make comparisons between numbers，to show that $6-3$ means the＇difference in value between 6 and 3 ＇or the ＇difference between 3 and 6 ＇and how many jumps they are apart．

Stage 3：The empty number line as a representation of a mental
of number lines，such as the progression listed below． Number track

1	2	3	4	5	6	7	8	9	10
Number line，all numbers labelled									
 0 1 2 3 4 5 6 7 8 9	10								

－Number line， 5 s and 10 s labelled
－Number line，10s labelled
－Number lines，marked but unlabelled

Steps in subtraction can be recorded on a number line．
support counting on and back in ones and tens and is an extension of the number track which children have experienced previously

		1		45		4		I		
11	12	11	11－	1	\square	\square	II	11	18	18
17	2	12		3	ת	3	17	31	8	10
II	1 号	咟	31	1	n	3	II	18	78	6
0	e	0	05	4	6	4	41	at	8	－
4	18	1	1	4	5	5	万	5	18	＋
H1	61	16	0	4	6	4	17	\％	8	13
万	1月	方	37	4	5	4	7	π	7	\％
\＃	18	11	0	－	σ	－	17	＂10	8	

Different orientations of the 100 square help children transfer their skills and understanding between similar representations．
－Bead strings can be used to illustrate subtraction． 6 beads are counted and then the 2 beads taken away to leave 4 ．

$$
\begin{gathered}
6-2=4 \\
000-00
\end{gathered}
$$

$$
13-5=8
$$

The steps may be recorded in a different order：

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods

strategy
 NB It is important to note that the empty number line is intended to be a representation of a mental method, not a written algorithm (method). Therefore the order and size (physical and numerical) of the jumps should be expected to vary from one calculation to the next.
 Finding an answer by COUNTING BACK

- Counting back is a useful strategy when the context of the problem results in there being less e.g. Bill has 15 sweets and gives 7 to his friend Jack, how many does he have left? As in addition, children need to be able to partition numbers e.g. the 7 is partitioned into 5 and 2 to enable counting back to 10
- The empty number line helps to record or explain the steps in mental subtraction.
- A calculation like 74-27 can be recorded by counting back 27 from 74 to reach 47 . The empty number line is a useful way of modelling processes such as

The steps often bridge through a multiple of 10
$15-7=8$
The seven is partitioned into 5 (to allow count back to 10) and two.

$74-27=47$ worked by counting back:

or combined

These examples show how children should be taught to use jumps of different sizes, and completed in an order that is most helpful depending on the numbers they are calculating with. This reinforces that this is a visual representation of a mental method and not a written alogrithm.
\cdots Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods

bridging through a multiple of ten.		
Using an empty number line Finding an answer by COUNTING ON - The steps can also be recorded by counting on from the smaller to the larger number to find the difference, for example by counting up from 27 to 74 in steps totalling 47 (shopkeeper's method). This is a useful method when the context asks for comparisons e.g. how much longer, how much smaller; for example: Jill has knitted 27 cm of her scarf, Alex has knitted 74 cm . How much longer is Alex's scarf? After practice of both, examples like this will illustrate how children might choose when it is appropriate to count on or back. This also helps to reinforce addition and subtraction as inverses and the links between known number facts.	$74-27=$ The 'jumps' should be added, either mentally or with jottings according to confidence, beginning with the largest number e.g. $40+4+3$. or	

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods

From Year 3 onwards

Stage 4: Making the link between the practical and columnar

subtraction

- To ensure the statutory fina written method is grounded in understanding, this stage connects the practical equipment to the formal written method using a similar and transferrable layout.
- Children first experience the practical version of column subtraction and when confident in explaining this, including exchanging when 'not having enough to subtract from', they record the written method alongside.
- Ideally children will experience this stage with a variety of practical equipment to make sure their understanding is embedded and transferrable between representations.
- Children may learn more from experiencing the inefficiency of not starting with column with least significant value than being 'told' where to start

72-47

Whilst the images here show the total existing alongside the original number, it is suggested that the 47 would be 'removed' from the original set, before 'dragging' what is left down to the totals box. This would more closely represent the written algorithm.

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods

Multiplication

Guidance	Examples	
Stage 1: Recording and developing mental images - Children will experience equal groups of objects. They will count in 2 s and 10 s and begin to count in 5 s . - They will experience practical calculation opportunities involving equal sets or groups using a wide variety of equipment, e.g. small world play, role play, counters, cubes etc. - They develop ways of recording calculations using pictures, etc. - They will see everyday versions of arrays, e.g. egg boxes, baking trays, ice cube trays, wrapping paper etc. and use this in their learning answering questions such as; 'How	Stage 1 $2+2+2+2+2=10$ $\mathrm{NH}_{2} \mathrm{NH} \text { NM, NM? NM, } \begin{aligned} & 5+5+5+5+5+5=30 \\ & 5 \times 6=30 \end{aligned}$ 2 groups of 3 are $6(3+3)$ 3 groups of 2 are $6(2+2+2)$	Initially recording of calculating should be done by adults to model what children have done in pictures, symbols, numbers and words. Over time there should be an expectation that children will also become involved in the recording process.

Starbeck Community Primary and Nursery School Agreed Mathematics Calculation Methods
many eggs would we need to fill the egg box? How do you know?

- Children will use repeated addition to carry out multiplication supported by the use of counters/cubes.

Stage 2: The bead string, number line and hundred square

- Children continue to use repeated addition to carry out multiplication tasks and represent their counting on a bead string or a number line.

4 lots of 3 are 12

3 lots of 4 are 12

Stage 2
3 lots of 5

Children should use

 pictorial representations and may use rings toshow e.g. 3 groups of 2
and 2 groups of 3
introducing the
commutative law of
multiplication

Children begin pattern work on a 100 square to help them begin to recognise multiples and rules of divisibility.

- On a bead string, children count out three lots of 5 then count the beads altogether.
- On a number line. Children
\pm Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods
count on in groups of 5.
These models illustrate how
multiplication relates to repeated
addition.
\because
Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods

Stage 4: Short multiplication for up to TU x 12

- The recording is reduced further, with the carried digits recorded either below the line or at the top of the next column.
- This method is appropriate for multiplying two and three digit numbers by numbers up to 12 , which relies on children have recall of their times table facts up to 12 .

342×7 becomes

Digits are carried below the

Starbeck Community Primary and Nursery School
Agreed Mathematics Calculation Methods
able to articulate the different stages of this calculation with the true values of the digits they are dealing with.

Division

Stage 1: Recording and developing

 mental images- Children are encouraged, through practical experiences, to develop physical and mental images.
- They make recordings of their work as they solve problems where they want to make equal groups of items or sharing objects out equally.

Initially recording of calculating should be done by adults to model what children have done in pictures, symbols, numbers and words. Over time there should be an expectation that children will also become involved in the recording process.
Sharing and Grouping
They solve sharing problems by using a
'one for you, one for me' strategy until all of
the items have been given out.
Children should find the answer by
counting how many eggs 1 basket has
got.
They solve grouping problems by
creating groups of the given number.
Children should find the answer by
counting out the eggs and finding out how
many groups of 3 there are.
They will begin to use their own jottings to
record division

Agreed Mathematics Calculation Methods

three they count in threes - grouping If the problem requires 15 eggs to be shared between 3 baskets, the multiple of three is obtained each time all three baskets have received an egg.	lines.	

Starbeck Community Primary and Nursery School

Agreed Mathematics Calculation Methods

Stage 5: Long division For calculations where numbers of up to 4 digits are divided by a two digit number, children are expected to use long division.	Stage 5 Long division $432 \div 15$ becomes	None so we exchange the 4 hundreds for 40 tens. How many groups of 15 tens can we make? 2 , equivalent to 300 . We record the 2 and subtract the 300 that we have 'organised' from the dividend. We are now left with 132 'ones'. How many groups of 15 can we make with these? 8 and we have 12 left over.

